Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474208

ABSTRACT

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a prevalent clinical condition associated with elevated morbidity and mortality rates. Patients with MASLD treated with semaglutide, a glucagon-like peptide-1 receptor agonist, demonstrate improvement in terms of liver damage. However, the mechanisms underlaying this beneficial effect are not yet fully elucidated. We investigated the efficacy of semaglutide in halting MASLD progression using a genetic mouse model of diabesity. Leptin-receptor-deficient mice with obesity and diabetes (BKS db/db) were either untreated or administered with semaglutide for 11 weeks. Changes in food and water intake, body weight and glycemia were monitored throughout the study. Body fat composition was assessed by dual-energy X-ray absorptiometry. Upon sacrifice, serum biochemical parameters, liver morphology, lipidomic profile and liver-lipid-related pathways were evaluated. The semaglutide-treated mice exhibited lower levels of glycemia, body weight, serum markers of liver dysfunction and total and percentage of fat mass compared to untreated db/db mice without a significant reduction in food intake. Histologically, semaglutide reduced hepatic steatosis, hepatocellular ballooning and intrahepatic triglycerides. Furthermore, the treatment ameliorated the hepatic expression of de novo lipogenesis markers and modified lipid composition by increasing the amount of polyunsaturated fatty acids. The administration of semaglutide to leptin-receptor-deficient, hyperphagic and diabetic mice resulted in the amelioration of MASLD, likely independently of daily caloric intake, suggesting a direct effect of semaglutide on the liver through modulation of the lipid profile.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Fatty Liver , Glucagon-Like Peptides , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Lipogenesis , Leptin/metabolism , Diabetes Mellitus, Experimental/metabolism , Fatty Liver/metabolism , Obesity/metabolism , Liver/metabolism , Body Weight , Triglycerides/metabolism , Diabetes Mellitus, Type 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Mice, Obese
2.
Antioxidants (Basel) ; 11(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36552707

ABSTRACT

In diabetes, chronic hyperglycemia, dyslipidemia, inflammation and oxidative stress contribute to the progression of macro/microvascular complications. Recently, benefits of the use of flavonoids in these conditions have been established. This study investigates, in two different mouse models of diabetes, the vasculoprotective effects of the synthetic flavonoid hidrosmin on endothelial dysfunction and atherogenesis. In a type 2 diabetes model of leptin-receptor-deficient (db/db) mice, orally administered hidrosmin (600 mg/kg/day) for 16 weeks markedly improved vascular function in aorta and mesenteric arteries without affecting vascular structural properties, as assessed by wire and pressure myography. In streptozotocin-induced type 1 diabetic apolipoprotein E-deficient mice, hidrosmin treatment for 7 weeks reduced atherosclerotic plaque size and lipid content; increased markers of plaque stability; and decreased markers of inflammation, senescence and oxidative stress in aorta. Hidrosmin showed cardiovascular safety, as neither functional nor structural abnormalities were noted in diabetic hearts. Ex vivo, hidrosmin induced vascular relaxation that was blocked by nitric oxide synthase (NOS) inhibition. In vitro, hidrosmin stimulated endothelial NOS activity and NO production and downregulated hyperglycemia-induced inflammatory and oxidant genes in vascular smooth muscle cells. Our results highlight hidrosmin as a potential add-on therapy in the treatment of macrovascular complications of diabetes.

3.
Int J Mol Sci ; 23(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35409324

ABSTRACT

Metabolic associated fatty liver disease (MAFLD) is a hepatic manifestation of metabolic syndrome and usually associated with obesity and diabetes. Our aim is to characterize the pathophysiological mechanism involved in MAFLD development in Black Tan and brachyuric (BTBR) insulin-resistant mice in combination with leptin deficiency (ob/ob). We studied liver morphology and biochemistry on our diabetic and obese mice model (BTBR ob/ob) as well as a diabetic non-obese control (BTBR + streptozotocin) and non-diabetic control mice (BTBR wild type) from 4-22 weeks. Lipid composition was assessed, and lipid related pathways were studied at transcriptional and protein level. Microvesicular steatosis was evident in BTBR ob/ob from week 6, progressing to macrovesicular in the following weeks. At 12th week, inflammatory clusters, activation of STAT3 and Nrf2 signaling pathways, and hepatocellular ballooning. At 22 weeks, the histopathological features previously observed were maintained and no signs of fibrosis were detected. Lipidomic analysis showed profiles associated with de novo lipogenesis (DNL). BTBR ob/ob mice develop MAFLD profile that resemble pathological features observed in humans, with overactivation of inflammatory response, oxidative stress and DNL signaling pathways. Therefore, BTBR ob/ob mouse is an excellent model for the study of the steatosis to steatohepatitis transition.


Subject(s)
Fatty Liver , Lipogenesis , Animals , Biomarkers/metabolism , Disease Progression , Fatty Liver/metabolism , Inflammation/pathology , Lipids , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Obese , Obesity/metabolism
4.
Front Pharmacol ; 13: 778776, 2022.
Article in English | MEDLINE | ID: mdl-35370692

ABSTRACT

Diabetic nephropathy (DN) is the main leading cause of chronic kidney disease worldwide. Although remarkable therapeutic advances have been made during the last few years, there still exists a high residual risk of disease progression to end-stage renal failure. To further understand the pathogenesis of tissue injury in this disease, by means of the Next-Generation Sequencing, we have studied the microRNA (miRNA) differential expression pattern in kidneys of Black and Tan Brachyury (BTBR) ob/ob (leptin deficiency mutation) mouse. This experimental model of type 2 diabetes and obesity recapitulates the key histopathological features described in advanced human DN and therefore can provide potential useful translational information. The miRNA-seq analysis, performed in the renal cortex of 22-week-old BTBR ob/ob mice, pointed out a set of 99 miRNAs significantly increased compared to non-diabetic, non-obese control mice of the same age, whereas no miRNAs were significantly decreased. Among them, miR-802, miR-34a, miR-132, miR-101a, and mir-379 were the most upregulated ones in diabetic kidneys. The in silico prediction of potential targets for the 99 miRNAs highlighted inflammatory and immune processes, as the most relevant pathways, emphasizing the importance of inflammation in the pathogenesis of kidney damage associated to diabetes. Other identified top canonical pathways were adipogenesis (related with ectopic fatty accumulation), necroptosis (an inflammatory and regulated form of cell death), and epithelial-to-mesenchymal transition, the latter supporting the importance of tubular cell phenotype changes in the pathogenesis of DN. These findings could facilitate a better understanding of this complex disease and potentially open new avenues for the design of novel therapeutic approaches to DN.

5.
J Neurochem ; 151(1): 116-130, 2019 10.
Article in English | MEDLINE | ID: mdl-30924927

ABSTRACT

Excitotoxic cell death because of the massive release of glutamate and ATP contributes to the secondary extension of cellular and tissue loss following traumatic spinal cord injury (SCI). Evidence from blockage experiments suggests that over-expression and activation of purinergic receptors, especially P2X7 , produces excitotoxicity in neurodegenerative diseases and trauma of the central nervous system. We hypothesize that the down-regulation of specific miRNAs after the SCI contributes to the over-expression of P2X7 and that restorative strategies can be used to reduce the excitotoxic response. In the present study, we have employed bioinformatic analyses to identify microRNAs whose down-regulation following SCI can be responsible for P2X7 over-expression and excitotoxic activity. Additional luciferase assays validated microRNA-135a-5p (miR-135a) as a posttranscriptional modulator of P2X7 . Moreover, gene expression analysis in spinal cord samples from a rat SCI model confirmed that the decrease in miR-135a expression correlated with P2X7 over-expression after injury. Transfection of cultures of Neuro-2a neuronal cell line with a miR-135a inhibitory sequences (antagomiR-135a), simulating the reduction of miR-135a observed after SCI, resulted in the increase of P2X7 expression and the subsequent ATP-dependent rise in intracellular calcium concentration. Conversely, a restorative strategy employing miR-135a mimicked reduced P2X7 expression, attenuating the increase in intracellular calcium concentration that depends on this receptor and protecting cells from excitotoxic death. Therefore, we conclude that miR-135a is a potential therapeutic target for SCI and that restoration of its expression may reduce the deleterious effects of ATP-dependent excitotoxicity induced after a traumatic spinal cord injury.


Subject(s)
Calcium/metabolism , Gene Expression Regulation/genetics , MicroRNAs/metabolism , Neurons/metabolism , Receptors, Purinergic P2X7/metabolism , Animals , Computational Biology , Female , Humans , Mice , Rats , Rats, Wistar , Receptors, Purinergic P2X7/genetics , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...